如何使用深度學(xué)習(xí)生成模糊背景?
步驟2:用于可視化從輸入中獲取的分割圖像的功能。def run_visualization():
"""Inferences DeepLab model and visualizes result."""
try:
original_im = Image.open(IMAGE_NAME)
except IOError:
print('Cannot retrieve image. Please check url: ' + url)
returnprint('running deeplab on image')
resized_im, seg_map = MODEL.run(original_im)
vis_segmentation(resized_im, seg_map)
return resized_im, seg_map
2.1:使用前面顯示的圖像調(diào)用上述功能。IMAGE_NAME = 'download2.jpg'
resized_im, seg_map = run_visualization()
分割后輸出。
2.2:現(xiàn)在,我們讀取輸入圖像并將其轉(zhuǎn)換為numpy數(shù)組。print(type(resized_im))
numpy_image = np.a(chǎn)rray(resized_im)
步驟3:分離背景和前景。在此步驟中,我們創(chuàng)建圖像的副本,然后,通過(guò)將背景中的值替換為0,并在已創(chuàng)建蒙版的位置保留255,將背景和前景與分割后的圖像分開(kāi),此處7表示汽車類別。person_not_person_mapping = deepcopy(numpy_image)
person_not_person_mapping[seg_map 。 7] = 0
person_not_person_mapping[seg_map == 7] = 255
3.1:可視化分離的蒙版圖像plt.imshow(person_not_person_mapping)
正如上一步中所述,背景已被黑色替換,汽車蒙版已變?yōu)榘咨,同樣,通過(guò)替換這些值,我們也沒(méi)有丟失任何重要信息。
3.2:調(diào)整蒙版圖像的大小使其等于原始圖像。在分割過(guò)程之后,圖像的大小減小了,在我們的例子中,圖像的大小減小為(300 x 500),因此我們將圖像的大小調(diào)整為原始大小,即(900 x 596)。orig_imginal = Image.open(IMAGE_NAME)
orig_imginal = np.a(chǎn)rray(orig_imginal)mapping_resized = cv2.resize(person_not_person_mapping,
(orig_imginal.shape[1],
orig_imginal.shape[0]),
Image.ANTIALIAS)
mapping_resized.shape
3.3:二值化由于調(diào)整了大小,圖像生成的值在0,1,2…255之間,為了再次將值限制在0–255之間,我們必須使用Otsu的Binarization技術(shù)對(duì)圖像進(jìn)行二值化。簡(jiǎn)而言之,Otsu的Binarization是一種尋找灰度圖像閾值的自適應(yīng)方法,它遍歷0-255范圍內(nèi)的所有可能閾值,并找到給定圖像的最佳可能閾值。在內(nèi)部,它基于一些統(tǒng)計(jì)概念(例如方差),以根據(jù)所選閾值找出類別。一旦選擇了最佳閾值,則大于閾值的像素值將被視為白色像素,小于閾值的像素值將被視為黑色像素。
gray = cv2.cvtColor(mapping_resized, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray,(15,15),0)
ret3,thresholded_img = cv2.threshold(blurred,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
plt.imshow(thresholded_img)

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車研發(fā)中心重磅落地,寶馬家門口“搶人”
最新活動(dòng)更多
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
推薦專題
- 1 人形機(jī)器人,正狂奔在批量交付的曠野
- 2 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 3 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 4 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 5 2025年8月人工智能投融資觀察
- 6 7 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)
- 8 Manus跑路,大廠掉線,只能靠DeepSeek了
- 9 一家被嚴(yán)重低估的國(guó)產(chǎn)AI巨頭
- 10 地平線的野心:1000萬(wàn)套HSD上車