使用Python+OpenCV進(jìn)行實(shí)時(shí)車(chē)道檢測(cè)
如上所示,對(duì)蒙版圖像應(yīng)用閾值后,我們只得到輸出圖像中的車(chē)道標(biāo)線,F(xiàn)在我們可以通過(guò)霍夫線變換很容易地檢測(cè)出這些標(biāo)記。霍夫線變換霍夫線變換是一種檢測(cè)任何可以用數(shù)學(xué)方法表示形狀的方法。例如,它可以檢測(cè)矩形、圓、三角形或直線等形狀。我們感興趣的是檢測(cè)可以表示為直線的車(chē)道標(biāo)線。這是相關(guān)文檔:https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_h(yuǎn)oughlines/py_h(yuǎn)oughlines.html在執(zhí)行圖像閾值化后對(duì)圖像應(yīng)用霍夫線變換將提供以下輸出:
我們需要對(duì)所有幀執(zhí)行此過(guò)程,然后將生成的幀縫合到新視頻中。用OpenCV在Python中實(shí)現(xiàn)車(chē)道檢測(cè)是時(shí)候用Python實(shí)現(xiàn)這個(gè)車(chē)道檢測(cè)項(xiàng)目了!我推薦使用Google Colab,因?yàn)闃?gòu)建車(chē)道檢測(cè)系統(tǒng)需要計(jì)算能力。首先導(dǎo)入所需的庫(kù):import osimport reimport cv2import numpy as npfrom tqdm import tqdm_notebookimport matplotlib.pyplot as plt讀取視頻幀我已經(jīng)從這個(gè)YouTube視頻中抽取了一些視頻片段。你可以從這個(gè)鏈接下載:https://drive.google.com/file/d/1e4cc4zFFna3Owyym6aq7ZXoquHA2l95O/view?usp=sharing。# 獲取幀的文件名col_frames = os.listdir('frames/')col_frames.sort(key=lambda f: int(re.sub('D', '', f)))
# 加載幀col_images=[]for i in tqdm_notebook(col_frames): img = cv2.imread('frames/'+i) col_images.a(chǎn)ppend(img)讓我們繪制一個(gè)幀:# 指定一個(gè)索引idx = 457
# plot frameplt.figure(figsize=(10,10))plt.imshow(col_images[idx][:,:,0], cmap= "gray")plt.show()
幀掩碼創(chuàng)建我們感興趣的區(qū)域是一個(gè)多邊形。我們想掩蓋除了這個(gè)區(qū)域以外的一切。因此,我們首先必須指定多邊形的坐標(biāo),然后使用它來(lái)準(zhǔn)備幀掩碼:# 創(chuàng)建0矩陣stencil = np.zeros_like(col_images[idx][:,:,0])
# 指定多邊形的坐標(biāo)polygon = np.a(chǎn)rray([[50,270], [220,160], [360,160], [480,270]])
# 用1填充多邊形cv2.fillConvexPoly(stencil, polygon, 1)# 畫(huà)出多邊形plt.figure(figsize=(10,10))plt.imshow(stencil, cmap= "gray")plt.show()
# 應(yīng)用該多邊形作為掩碼img = cv2.bitwise_and(col_images[idx][:,:,0], col_images[idx][:,:,0], mask=stencil)
# plot masked frameplt.figure(figsize=(10,10))plt.imshow(img, cmap= "gray")plt.show()
圖像預(yù)處理我們必須對(duì)視頻幀執(zhí)行一些圖像預(yù)處理操作來(lái)檢測(cè)所需的車(chē)道。預(yù)處理操作包括:圖像閾值化霍夫線變換1.圖像閾值化# 應(yīng)用圖像閾值化ret, thresh = cv2.threshold(img, 130, 145, cv2.THRESH_BINARY)
# 畫(huà)出圖像plt.figure(figsize=(10,10))plt.imshow(thresh, cmap= "gray")plt.show()
2.霍夫線變換lines = cv2.HoughLinesP(thresh, 1, np.pi/180, 30, maxLineGap=200)
# 創(chuàng)建原始幀的副本dmy = col_images[idx][:,:,0].copy()
# 霍夫線for line in lines: x1, y1, x2, y2 = line[0] cv2.line(dmy, (x1, y1), (x2, y2), (255, 0, 0), 3)
# 畫(huà)出幀plt.figure(figsize=(10,10))plt.imshow(dmy, cmap= "gray")plt.show()
現(xiàn)在我們將對(duì)每個(gè)幀應(yīng)用所有這些操作。我們還將結(jié)果幀保存在新目錄中:cnt = 0
for img in tqdm_notebook(col_images):
# 應(yīng)用幀掩碼 masked = cv2.bitwise_and(img[:,:,0], img[:,:,0], mask=stencil)
# 應(yīng)用圖像閾值化 ret, thresh = cv2.threshold(masked, 130, 145, cv2.THRESH_BINARY)
# 應(yīng)用霍夫線變換 lines = cv2.HoughLinesP(thresh, 1, np.pi/180, 30, maxLineGap=200) dmy = img.copy()
#畫(huà)出檢測(cè)到的線 try: for line in lines: x1, y1, x2, y2 = line[0] cv2.line(dmy, (x1, y1), (x2, y2), (255, 0, 0), 3)
cv2.imwrite('detected/'+str(cnt)+'.png',dmy)
except TypeError: cv2.imwrite('detected/'+str(cnt)+'.png',img)
cnt+= 1視頻準(zhǔn)備# 輸入幀的路徑pathIn= 'detected/'
#輸出視頻路徑pathOut = 'roads_v2.mp4'
# 視頻每秒的幀數(shù)fps = 30.0from os.path import isfile, join
# 獲取幀的文件名files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]files.sort(key=lambda f: int(re.sub('D', '', f)))接下來(lái),我們將把檢測(cè)到的車(chē)道上的所有幀放入一個(gè)列表中:frame_list = []
for i in tqdm_notebook(range(len(files))): filename=pathIn + files[i] #讀取每一個(gè)文件 img = cv2.imread(filename) height, width, layers = img.shape size = (width,height)
#將幀插入圖像數(shù)組 frame_list.a(chǎn)ppend(img)最后,我們現(xiàn)在可以使用下面的代碼將幀合并為視頻:# 寫(xiě)入視頻out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size)
for i in range(len(frame_array)): out.write(frame_array[i])
out.release()這就完成了Python中的車(chē)道檢測(cè)系統(tǒng)。
結(jié)尾在本教程中,我們介紹了一種簡(jiǎn)單的車(chē)道檢測(cè)技術(shù)。我們沒(méi)有使用任何模型或復(fù)雜的圖像特征,相反,我們的解決方案完全基于某些圖像預(yù)處理操作。但是,在很多情況下,這個(gè)解決方案都無(wú)法工作。例如,當(dāng)沒(méi)有車(chē)道標(biāo)線,或者道路上的車(chē)輛太多時(shí),該系統(tǒng)將失敗。在車(chē)道檢測(cè)中有更復(fù)雜的方法來(lái)克服這些問(wèn)題。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車(chē)母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車(chē)研發(fā)中心重磅落地,寶馬家門(mén)口“搶人”
最新活動(dòng)更多
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
推薦專(zhuān)題
- 1 人形機(jī)器人,正狂奔在批量交付的曠野
- 2 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 3 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 4 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 5 2025年8月人工智能投融資觀察
- 6 7 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)
- 8 一家被嚴(yán)重低估的國(guó)產(chǎn)AI巨頭
- 9 Manus跑路,大廠掉線,只能靠DeepSeek了
- 10 地平線的野心:1000萬(wàn)套HSD上車(chē)